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Abstract Coral reefs are increasingly being altered by a
myriad of anthropogenic activities and natural distur-

bances. Long-term studies offer unique opportunities to

understand how multiple and recurrent disturbances can
influence coral reef resilience and long-term dynamics.

While the long-term dynamics of coral assemblages have

been extensively documented, the long-term dynamics of
coral reef fish assemblages have received less attention.

Here, we describe the changes in fish assemblages on

Tiahura reef, Moorea, from 1979 to 2011. During this 33-yr
period, Tiahura was exposed to multiple disturbances

(crown-of-thorns seastar outbreaks and cyclones) that

caused recurrent declines and recoveries of coral cover and
changes in the dominant coral genera. These shifts in coral

composition were associated with long-term cascading

effects on fish assemblages. The composition and trophic
structure of fish assemblages continuously shifted without

returning to their initial composition, whereas fish species

richness remained stable, albeit with a small increase over
time. We detected nonlinear responses of fish density when

corals were most degraded. When coral cover dropped

below 10 % following a severe crown-of-thorns sea star
outbreak, the density of most fish trophic groups sharply

decreased. Our study shows that historical contingency

may potentially be an important but largely underestimated
factor explaining the contemporary structure of reef fish

assemblages and suggests that temporal stability in their

structure and function should not necessarily be the target
of management strategies that aim at increasing or main-

taining coral reef resilience.

Keywords Resilience ! Threshold ! Tipping point ! Coral
fish assemblages ! Historical contingency ! Shifting
baseline

Introduction

Most coral reefs are undergoing rapid changes due to an

increase in both anthropogenic and natural disturbances

(Chin et al. 2011). Some anthropogenic disturbances such
as overfishing, habitat destruction and climate change are

largely contributing to the overall degradation of these
ecosystems (Bellwood et al. 2004; Pandolfi et al. 2005;

Mora 2008; Alvarez-Filip et al. 2009; De’ath et al. 2009;

Mora et al. 2011; Ban et al. 2014). For instance, the
prevalence of these disturbances in the Caribbean has

caused a gradual regime shift from a coral- to a macroal-

gal-dominated state that has persisted over decades, thus
reflecting a dramatic loss in resilience (Hughes 1994;

McClanahan and Muthiga 1998; Ostrander et al. 2000;

Gardner et al. 2003; Hughes et al. 2010, 2013). Alterna-
tively, natural disturbances also play an important role in
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the long-term dynamics of coral reefs, and there is

mounting evidence that they can often cause succession
between periods of decline in coral cover and periods of

recovery (Wilson et al. 2006; Adjeroud et al. 2009;

Osborne et al. 2011; Speed et al. 2013; Graham et al.
2015).

Undoubtedly, long-term dynamics of coral reefs, and

ultimately their resilience, are influenced by both natural
and anthropogenic disturbances. However, to understand

coral reef resilience, many studies compare snapshots of
coral reef state along a disturbance gradient ignoring their

inherent temporal dynamics (Christensen et al. 1996;

Dayton et al. 1998; Knowlton and Jackson 2008; Sandin
et al. 2008; D’agata et al. 2014). Multi-decadal studies are

required to gain insight into coral reef resilience, as decline

and recovery periods operate at scales of one to several
decades (Hughes et al. 2010). To date the available long-

term surveys of coral reefs have primarily documented

either the gradual regime shift occurring in the Caribbean
(e.g., Hughes 1994; McClanahan and Muthiga 1998;

Gardner et al. 2003) or the loss of coral occurring on the

Great Barrier Reef (GBR) over the last 27 yr (e.g., Bell-
wood et al. 2004; De’ath et al. 2012). Other long-term

surveys have reported changes in coral assemblages in

other parts of the globe, such as Taiwan (26 yr of survey:
Kuo et al. 2012), Kenya (McClanahan and Graham 2005;

Darling et al. 2010), Hawaii (Coles and Brown 2007),

Western Australia (Speed et al. 2013), the Indo-Pacific
region (Bruno and Selig 2007), South Pacific (Adjeroud

et al. 2002, 2009), or the Indian Ocean (Ateweberhan et al.

2011). These studies mostly focused on coral assemblages;
however, it is also essential to understand whether changes

in coral assemblages can induce long-term cascading

effects on fish assemblages, as many fish species depend on
corals for food or shelter.

Current evidence suggests that periods of coral decline

can have contrasting effects on fish assemblages, with
studies reporting both decreases (Halford et al. 2004; Jones

et al. 2004; Graham et al. 2006; Halford and Caley 2009;

Paddack et al. 2009) or no change (Bellwood et al. 2006,
2012; Cheal et al. 2008; Wilson et al. 2009) in fish richness

and/or density due to declines in coral cover. However,

most long-term surveys (one to two decades) have revealed
that coral declines can have long-lasting effects on the

composition of fish assemblages (Halford et al. 2004; Jones

et al. 2004; Bellwood et al. 2006, 2012; Graham et al.
2006; Cheal et al. 2008; Halford and Caley 2009; Wilson

et al. 2009). Most of these studies have focused on single

disturbances, and therefore, our knowledge of how fish
assemblages respond to recurrent disturbances is unknown.

In addition, as the effects of disturbances on fish assem-

blages can vary greatly among taxonomic and trophic
groups of fishes, and among locations, it is important to

incorporate a wide range of fish assemblages in different

locations. To date, the majority of studies have focused on
the GBR while other locations have received less attention

(e.g., Seychelles: Graham et al. 2006, 2015; Tanzania:

Garpe et al. 2006).
Here, we focused on Tiahura reef (Moorea, French

Polynesia). The coral (Bouchon 1985; Adjeroud et al.

2009; Pratchett et al. 2011; Trapon et al. 2011) and fish
assemblages (Galzin and Legendre 1987; Berumen and

Pratchett 2006) of this coral reef have been intensively
studied since the early 1980s. However, previous studies

have focused on either short timescales (Trapon et al.

2011), only coral assemblages (Adjeroud et al. 2009;
Pratchett et al. 2011), or specific groups of fish (Berumen

and Pratchett 2006). Hence, we seized the opportunity to

bring together all existing data on both coral and fish
assemblages to document their joint long-term dynamics

over the past three decades. During this period, Tiahura

reef was exposed to multiple disturbances including
cyclones, outbreaks of the coral predator crown-of-thorns

seastar (COTS; Acanthaster planci), and coral bleaching.

These are among the most important natural disturbances
influencing coral reef ecosystems in the insular South

Pacific, the GBR and elsewhere (Osborne et al. 2011;

De’ath et al. 2012; Kayal et al. 2012; Leray et al. 2012;
Baird et al. 2013). In this study, we aimed at documenting

the long-term dynamics of coral cover in response to

multiple disturbances. We further assessed whether recur-
rent declines and recoveries in coral cover led to cascading

effects on the long-term dynamics of fish assemblages.

Finally, we assessed whether there were early signals or
thresholds of major changes in the density of six key fish

trophic groups in response to change in coral cover.

Materials and methods

Study system—Tiahura reef

Tiahura reef is located on the northwestern coast of Moorea
Island in the Society archipelago (French Polynesia). This

reef has been extensively studied since the early 1980s

(e.g., Bouchon 1985; Galzin and Legendre 1987; Adjeroud
et al. 2002, 2009) offering a unique opportunity to docu-

ment its long-term dynamics over several decades. Moorea

is the second largest inhabited island in French Polynesia.
Its coral reefs support many recreational activities (e.g.,

scuba diving) as well as subsistence fishing. Moorea is not

exempt from anthropogenic pressures such as nutrient input
and increased sedimentation but these are mostly contained

within the lagoon. Here we focus on the fore reef, outside

the lagoon, which is the part of the reef most exposed to
COTS outbreaks and cyclones.
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Data collection

The coral and fish assemblages of Tiahura reef were sur-
veyed over five transects located on the fore reef at 12 m

depth. Initially, a 50 9 2 m permanent belt transect

marked by iron stakes hammered in the substrate every
10 m was used to estimate fish assemblages in 1983 and

annually from 1987 to 2011. Four additional 25 9 8 m belt

transects were used to estimate fish assemblages from 1991
to 2011. Consequently, fish composition at Tiahura was

assessed in 1983 and on a yearly basis from 1987 to 2011.

Coral cover was estimated within each of the fish transects
using the point-intercept method along the center of each

transect. Coral cover was estimated by scoring presence of

corals at 50 equally spaced points (i.e., at 1-m intervals)
along the 50-m transect. The percent cover of coral genera

and algal turf (heterogeneous assemblage of filamentous

algae) were estimated at 100 points located every 25 cm
along the 25-m transects. To gain a better understanding of

the long-term dynamics in coral cover at Tiahura, we also

retrieved its percentage coral cover in 1979 and 1982 from
a previous study (Bouchon 1985) allowing us to document

the temporal dynamics in coral cover over a longer period

(1979–2011). Note, however, that identification of coral
composition at the genus level only started in 1991. Visual

census counts of 219 fish species were performed by the

same two observers between February and April of each
year.

Fish species were categorized among six trophic groups

corresponding to: (1) herbivores; (2) planktivores; (3)
corallivores; (4) fishes feeding on small invertebrates

(microcarnivores); (5) fishes feeding on large and mobile

invertebrates (macrocarnivores); and (6) piscivores (see
Electronic Supplementary Material, ESM, Table S1). One

detritivore, Crenimugil crenilabis, was not included in any

of the above trophic guilds. These classification categories
have been used in several recent studies (e.g., Mouillot

et al. 2013, 2014) and are representative of the food web

structure that mediates energy flow in the system. It is well
known that most reef fish species have complex diets and

that fishes adapt their diet to available resources (but see

Leray et al. 2015) and may also shift their diet as they grow
(e.g., Kulbicki et al. 2005). However, such changes in diet

are of low amplitude and, due to the low number of trophic

group categories, this classification strategy is robust to
misclassifications (Mouillot et al. 2014).

Statistical analysis

The long-term dynamics of Tiahura reef were first assessed
by documenting the temporal changes in coral cover over

33 yr (1979–2011). Because coral cover at Tiahura was

characterized by recurrent declines and recoveries over this

time span (see ‘‘Results’’), the survey was further divided

into three periods of decline and two periods of recovery
(Table 1). For each of these periods, we computed the

magnitude of the change in coral cover (DCC = CCe -

CCs; where CCs and CCe are the coral cover at the start and
at the end of the period, respectively). To determine whe-

ther this succession of declines and recoveries involved

changes in coral composition, we further assessed the
temporal dynamics in coral composition from 1991 to 2011

using nonmetric multidimensional scaling (NMDS) on the
percentage-difference coefficient of arcsine square-root-

transformed percent cover of the different coral genera.

To assess whether long-term dynamics in coral cover
could have cascading effects on fish composition from

1983 to 2011, we similarly performed a NMDS on the

percentage-difference coefficient of log-transformed den-
sity of all fish species. To test whether fish composition

differed among periods of decline and recovery in coral

cover, we performed an analysis of variance based on the
distance matrix of all pairwise observations and used 999

permutations to test for significant differences. We further

assessed variability in fish composition within each period
as the mean distance between observations and their

respective centroids using an analysis of multivariate

homogeneity of group dispersions. Pairwise contrasts
between periods were further analyzed using parametric

Tukey’s HSD.

Finally, we tested whether recurrent periods of decline
and recovery in coral cover could lead to abrupt responses

in fish densities. To this aim we modeled the density of all

fish species and the six fish trophic groups as a function of
coral cover for each period separately using either linear

models (LMs) or piecewise linear models (PLMs). PLMs

were fitted to the data using the R function piecewise.linear
from the package SiZer. This function fits a spline with one

breakpoint of unknown location and uses a bootstrap pro-

cedure to estimate an empirical confidence interval of the
breakpoint by resampling the raw data points 1000 times.

The model with the lowest Aikake information criterion

(AIC) value by over at least two units was considered the
best fit (Burnham and Anderson 2002). Models were

reported only when the coefficient of determination (R2)

exceeded 10 %. All analyses were done using R 2.15.1 (R
Core Team 2012).

Results

Coral cover on Tiahura reef varied tremendously over the
three decades of survey (F25,84 = 29.931, P\ 0.0001;

Fig. 1; Table 1) and was characterized by recurrent periods

of decline and recovery. Four major natural events con-
tributed to the three declines: a COTS outbreak in 1979; a
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cyclone in 1991; and a COTS outbreak in 2006 coupled
with a cyclone in 2010. Coral cover had dropped by 75, 56,

and 97 % at the end of the three periods of decline,

respectively (Fig. 1; Table 1). Smaller declines that were
not associated with any of the two major natural distur-

bances also occurred, for instance in 1990 and in 2003. The

percent cover of algal turf showed the opposite temporal
trend to coral cover, and they were strongly negatively

correlated over the entire survey (r = -0.91, P\ 0.001;

Fig. 1). Although periods of recovery always resulted in
similar maximum levels of live coral cover (*50 %), the

NMDS on coral genera revealed changes in coral compo-
sition between the two recovery periods (Fig. 2a). Most of

the variation in coral composition captured by the first

dimension of the NMDS can be explained by the changes
in total coral cover (r between the first-dimension coordi-

nates and coral cover = -0.94), so that changes occurring

along the first dimension mimic those occurring in coral
cover (Fig. 1). Changes occurring along the second

dimension of the NMDS were independent from those of

coral cover and reflected long-term changes in coral com-
position. In particular, in 1991, at the end of the first

recovery following a COTS outbreak in 1979, Pocillopora

became the most widespread coral genus (25.0 ± 7.1 %
SD; ESM Table S2). In contrast, in 2006, at the end of a

second recovery following a cyclone in 1991, the coral

assemblage cover was shared evenly among three genera:
Pocillopora spp. (15.9 ± 3.7 %), Acropora spp.

(11.1 ± 2.8 %) and Porites spp. (11.8 ± 3.3 %).

From 1983 to 2011, we characterized significant chan-
ges in fish assemblages (Figs. 2b, 3), both in term of spe-

cies composition (F25,109 = 4.15, P = 0.001) and trophic
structure (F25,109 = 8.34, P = 0.001). Variability in fish

species composition depended on whether coral cover was

declining or recovering. Changes in fish composition were
larger during periods of decline in coral cover than during

periods of recovery (P = 0.001 based on 999 permuta-

tions; Fig. 2c). Importantly, these changes were constantly
driving the assemblages away from their initial state in

1983 (Fig. 2b). Fish composition exhibited little change

Fig. 1 Temporal dynamics in coral cover at Tiahura reef from 1979
to 2011. Colors refer to three periods of decline and two periods of
recovery in coral cover. Periods of decline were associated with
different natural disturbances shown as black arrows: one COTs
outbreak in 1979; one cyclone in 1991; and both a COTs outbreak in
2006 and a cyclone in 2010. Gray arrows correspond to the various

bleaching events that occurred at Tiahura. Hashed lines indicate cubic
spline interpolation of coral cover provided for illustrative purposes,
while vertical bars are 95 % confidence intervals (CI). The green
dotted line represents the percent cover of algal turf. Note that fish
monitoring started in 1983

Table 1 Description of the
different periods of decline and
recovery in coral cover at
Tiahura from 1979 to 2011

Period Disturbance Start End CCs CCe DCC

Decline 1 COTS 1979 1982 46.27 11.74 -34.53

Recovery 1 – 1982 1991 11.74 48.96 37.22

Decline 2 Cyclone 1991 1993 48.96 21.56 -27.4

Recovery 2 – 1993 2006 25.04 46.81 21.77

Decline 3 COTS ? cyclone 2006 2011 46.81 1.18 -45.63

For each period, we indicate the year and corresponding percent of coral cover when the disturbance started
and ended (CCs and CCe, respectively). We also provide the magnitude of coral cover lost or gained (DCC).
Note that the survey of fish assemblages only started during the first period of recovery

296 Coral Reefs (2016) 35:293–302

123



(a) (b)

(c)

Fig. 2 Temporal dynamics in coral and fish assemblages at Tiahura
reef. a Long-term trajectory of coral assemblages (1991–2007)
resulting from a two-dimensional nonmetric multidimensional scaling
(NMDS) on the percentage-difference coefficient of arcsine square-
root-transformed percent cover of the different coral genera. The last
4 yr (2008–2011) are not shown because most transects had zero coral
cover (see Fig. 1). b Long-term trajectory of fish assemblages
resulting from a two-dimensional NMDS on the percentage-differ-
ence coefficient of log-transformed fish density. Gray crosses
represent individual transects, and points represent year centroids.

Observations are colored by periods of decline and recovery
following the color code used in Fig. 1. Convex hulls surround all
observations within a given period. Note that the two dimensions of
the NMDS are arbitrary. c Boxplot of the mean distance of
observations within a given period to their centroid. Boxes represent
the lower and upper quartiles and are drawn with widths proportional
to the number of observations per period. Error bars are 95 %
confidence limits and open circles represent outliers. R1, R2 period of
recovery 1 and 2; D2, D3: period of decline 2 and 3

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3 Temporal dynamics in fish density from 1983 to 2011 for a all
fish species; b planktivores; c herbivores; d corallivores; e microcar-
nivores; f macrocarnivores; g piscivores; and h temporal dynamics in
fish richness. Points represent individual transects colored by periods
of decline and recovery following the color code used in Fig. 1. For

each panel a generalized additive model was fitted to the data to
provide the general temporal trend along with its 95 % CI. Dashed
bars correspond to limits between periods. Note that units and scales
of the y-axis change across panels

Coral Reefs (2016) 35:293–302 297

123



during the first period of recovery in coral cover

(1983–1991; Fig. 2b, c). Fish composition showed greater
variability during the first period of decline in coral cover

triggered by the cyclone compared to periods of recovery

(1991–1993; Fig. 2c) and consistently changed along the
first dimension of the ordination (Fig. 2b). During the

second period of recovery in coral cover (1993–2006), fish

composition continued to change, consistently following a
new trajectory along the second dimension of ordination

although the rate of change decreased compared with the
previous period (Fig. 2b, c). Fish composition was the most

variable during the third period of decline in coral cover

(2006–2011) and followed a new trajectory along the first
dimension of ordination. Overall, the first dimension of the

ordination appeared to reflect changes in fish composition

during periods of decline in coral cover, while the second
dimension appeared to reflect changes associated with

period of recovery. These changes along the first dimension

of the NMDS were related to shifts from corallivorous
species that had negative scores to microcarnivorous, her-

bivorous, and planktivorous species that had generally high

positive scores along this dimension (ESM Fig. S1). No
differences in species scores were characterized among

trophic groups along the second dimension.

Planktivores and herbivores were the most prevalent
groups of fishes accounting for 57 and 25 %, respectively,

of every fish observed (Fig. 3). Total fish density and

density of the six trophic groups exhibited contrasting
relationships with coral cover across periods of recovery

and decline although the density of corallivores mirrored

that of coral cover throughout the entire survey. For three
periods between 1983 and 2006, corresponding to the first

recovery following a COTS outbreak in 1979, a period of

decline in coral cover triggered by a cyclone in 1991, and
the subsequent recovery, coral cover explained a variable

amount of the variation in trophic group densities (up to

61 % for corallivores). Although variation in the density of
some trophic groups was poorly explained by variation in

coral cover, all the significant models suggested that fish

density varied linearly with coral cover (ESM Figs. S2–
S4). During the last period of decline (2006–2011), most

fish–coral cover relationships became nonlinear (Table 2;

Fig. S5). Coral cover during this period reached such low
levels that the densities of trophic groups drastically

changed below different threshold levels. For example,

when coral cover started to decline in 2006, corallivores
declined, whereas microcarnivores and macrocarnivores

increased (Table 2). Drastic declines in corallivores and

planktivores were triggered below coral cover thresholds of
19 % (95 % CI 15–37 %) and 13 % (95 % CI 5–23 %),

respectively. Furthermore, when coral cover dropped

below 5 % (95 % CI 2–44 %), microcarnivores and
macrocarnivores also started to drastically decrease.

Consequently, the total density of all fish species declined

precipitously at very low coral cover (Table 2). Never-
theless, over most of the study period, fish species richness

(number of species/transect) increased through time, albeit

very slightly (?0.54 species yr-1, P\ 0.001).

Discussion

Our results show that coral cover at Tiahura reef was

extremely dynamic, fluctuating between periods of decline
and recovery over more than three decades. Indeed, coral

cover rarely stabilized at a high value (*50 %) nor did it

remain very low (\10 %) over the survey. This cyclical
pattern in coral cover is similar to that described for the

GBR (Osborne et al. 2011) and Western Australia (Speed

et al. 2013). Coral reefs should not be defined as either
‘healthy’ or ‘degraded’ based on estimates of coral cover

alone (high cover vs. low cover), as both states are transient

and part of a long-term dynamic. At Tiahura, recurrent
COTS outbreaks and cyclones causing severe coral mor-

tality could partly explain this dynamic, as each major

decline in coral cover was associated with one of these two
types of disturbance. Other types of disturbances, including

anthropogenic stressors, could potentially also contribute to

the long-term dynamics in coral cover we documented, as
exhibited by coral bleaching (e.g., Garpe et al. 2006;

Graham et al. 2006; Halford and Caley 2009). Although
several bleaching events of various intensity occurred over

the past decades on Tiahura reef (Adjeroud et al. 2005),

Table 2 Nonlinear responses of coral fish assemblages to coral
degradation during the third period of decline (2006–2011)

Group Model R2 Threshold

Total density Piecewise (NS/-) 55.2 4.7 % [2.3–14.3]

Herbivores Linear (-) 12.5 – –

Plankton feeders Piecewise (NS/–) 45.4 12.6 % [4.6–22.7]

Corallivores Piecewise (NS/–) 93.3 19.0 % [14.9–37.1]

Microcarnivores Piecewise (?/-) 53.3 5.3 % [3.3–43.7]

Macrocarnivores Piecewise (?/-) 51.4 5.0 % [2.3–8.5]

Piscivores Linear (-) 25.3 – –

Responses were either linear or nonlinear (piecewise). (-) indicates a
negative response (e.g., density of herbivores decreases as coral cover
decreases) and (?) a positive response. For nonlinear responses, we
give the response above and below thresholds [e.g., (NS/–) = fish
density does not significantly change as a function of coral cover
above the threshold of say, 4.7 %, while it decreases below this
threshold]. Thresholds correspond to the estimation of coral cover at
which the nature of the relationship changes. R2 is the coefficient of
determination. Responses of fish assemblages during the three other
periods are either linear or nonsignificant (see Electronic Supple-
mentary Material Figs. S2–S5). 95 % CI are given within square
brackets
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they have had little to no impact on the cover of live corals

on the exposed fore reef (Adjeroud et al. 2002, 2009; Penin
et al. 2013). The impact of anthropogenic disturbances may

be stronger within the lagoon where most anthropogenic

threats occur than on the fore reef. At a smaller temporal
scale (1991–2011), we also documented changes in coral

composition. In particular, coral assemblages were differ-

ent after each recovery. Acropora was the dominant genus
in 1979 (Bouchon 1985), but decreased from recovery to

recovery in favor of other compositions such as Pocillo-
pora, Acropora, or Porites in 1991, which to some extent

confirms that Porites is frequently favored in the face of

multiple disturbances (Adjeroud et al. 2009).
Our study also suggests that long-term dynamics in coral

cover and the associated changes in coral composition can

have long-lasting cascading effects on the fish assem-
blages. We characterized a long-term trajectory in the

composition of fish assemblages from 1983 to 2011. Each

severe natural disturbance had a specific effect on fish
composition contributing to continuous changes over time.

Hence, despite the relatively rapid recoveries in coral

cover, both coral and fish assemblages bear the legacy of
past disturbance history, and neither has recovered the

composition that was first recorded in the initial surveys.

Such results highlight the importance of historical contin-
gency in coral reef ecosystems (Hughes 1989; Jackson

et al. 2001; Wilson et al. 2006). Our results also add to the

growing body of evidence showing the long-lasting effects
of single disturbances on the composition of fish assem-

blages of the GBR (Halford et al. 2004; Bellwood et al.

2006, 2012; Cheal et al. 2008; Halford and Caley 2009;
Wilson et al. 2009) and other locations such as the Sey-

chelles (Graham et al. 2006, 2015), Tanzania (Garpe et al.

2006) and Papua New Guinea (Jones et al. 2004). Although
fish diversity and/or density can remain relatively stable in

the face of natural disturbances (Bellwood et al. 2006,

2012; Cheal et al. 2008; Wilson et al. 2009; Emslie et al.
2011), their composition can shift without regaining their

initial state even when coral cover has fully recovered

(Bellwood et al. 2012). Collectively, these results suggest
that fish assemblages may either need greater time between

disturbances to fully recover (McClanahan and Graham

2005; Halford and Caley 2009) or may never regain their
pre-disturbance composition due to changes in the benthic

assemblages. Reef fish recruitment is extremely variable

through time and space (Planes et al. 1993; Dufour et al.
1996; Tolimieri et al. 1998) and could combine with nat-

ural disturbances to explain the constantly evolving fish

assemblage composition.
We showed that the density of several key fish trophic

groups abruptly decreased when coral cover dropped below

a threshold of 10 %. In the Indo-Pacific, fish assemblages
and coral cover frequently exhibit linear relationships when

coral cover is greater than 10 % (Bell and Galzin 1984;

Bozec et al. 2005; Komyakova et al. 2013; but see Wilson
et al. 2009; McClanahan et al. 2011; Pratchett et al. 2014;

Beldade et al. 2015). However, we observed that although

the decrease in fish density was slow at first, it decreased
much faster when coral degradation was the most severe

(coral cover\10 %), after the succession of a COTS out-

break and a cyclone (2006–2011). This result suggests and
reinforces the notion that there is a threshold when coral

cover gets lower than 10 % (e.g., Beldade et al. 2015).
Corallivores were the most sensitive to variation in coral

cover and exhibited the highest threshold value in coral

cover during this period of decline, revealing their tight
trophic dependency on corals. Coral specialists, either coral

feeders or coral dwellers, are usually more sensitive to

variation in coral cover (Jones et al. 2004; Wilson et al.
2009), while other habitat features such as coral diversity

(Komyakova et al. 2013) or habitat complexity (Friedlan-

der and Parrish 1998; Wilson et al. 2007; Emslie et al.
2008; Pratchett et al. 2014) may be more important to

explain variation in other species. The combination of both

a COTS outbreak in 2006 and a cyclone in 2010 may have
driven the nonlinear relationship between coral cover and

fish assemblages during this period that was absent when

each disturbance occurred individually.
We documented little change in species richness

(number of species/transect) but large changes in both

density (fish m-2) and trophic structure (relative densities
of trophic groups). Interestingly, besides corallivores

whose density closely mirrored that of coral cover, the

density of the other trophic groups exhibited loose rela-
tionships when coral cover was higher than 10 %. This

may suggest that the carrying capacity at Tiahura reef is

weakly linked to coral cover when coral is abundant, but
below a given threshold there is a loss in carrying capacity

which is directly linked to coral cover. This result accords

with recent broad-scale studies outlining a general lack of
fluctuation in local diversity (Hobbs et al. 2006; Graham

et al. 2014) but major compositional changes over time

(Vellend et al. 2013; Dornelas et al. 2014).
We clearly showed that recurrent disturbances can shape

the long-term trajectory of coral reef ecosystems. This can

have serious consequences on coral reefs worldwide as
natural disturbances are predicted to increase in frequency

and magnitude in the near future (Harley et al. 2006; Karl

et al. 2008; Turner 2010; van Hooidonk et al. 2013). In our
study, both COTS outbreaks and cyclones appear to be

important drivers of this dynamic, but it is more difficult to

determine the additional influence of anthropogenic activ-
ities occurring either at the local (e.g., fishing, agriculture)

or global (climate change) scales. In addition, the fre-

quency or magnitude of natural disturbances can be indi-
rectly modulated by anthropogenic activities. For instance,
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both fishing (Dulvy et al. 2004) and terrestrial nutrient

inputs (Fabricius et al. 2010; Lane 2012) can contribute to
an increase in the frequency of COTS outbreaks. Tiahura is

probably increasingly impacted by such anthropogenic

disturbances which may explain part of the long-term
dynamic outlined in our study.

While a great deal of effort is devoted to improving

management for the sustainable future of coral reefs,
studies that lack a temporal component ignore the poten-

tially large magnitude of changes naturally occurring in
coral reefs. Coral reefs are naturally dynamic systems and

have been subject to various anthropogenic impacts for

several centuries (Jackson et al. 2001; Pandolfi et al. 2003;
Norris et al. 2013). Historical contingency may potentially

be an important, yet largely underestimated, factor

explaining the contemporary structure of reef fish assem-
blages. Management strategies should be framed within

this context and require long-term surveys even if decision-

makers often wish to be provided with shorter-term
information.
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